pycolmap
- class pycolmap.Device
Members:
auto
cpu
cuda
- auto = <Device.auto: -1>
- cpu = <Device.cpu: 0>
- cuda = <Device.cuda: 1>
- property name
- property value
- class pycolmap.logging
- ERROR = <Level.ERROR: 2>
- FATAL = <Level.FATAL: 3>
- INFO = <Level.INFO: 0>
- class Level
Members:
INFO
WARNING
ERROR
FATAL
- ERROR = <Level.ERROR: 2>
- FATAL = <Level.FATAL: 3>
- INFO = <Level.INFO: 0>
- WARNING = <Level.WARNING: 1>
- property name
- property value
- WARNING = <Level.WARNING: 1>
- alsologtostderr = True
- static error(message: str) None
- static fatal(message: str) None
- static info(message: str) None
- log_dir = ''
- logtostderr = False
- minloglevel = 0
- static set_log_destination(level: pycolmap.logging.Level, path: str) None
- stderrthreshold = 2
- static verbose(level: int, message: str) None
- verbose_level = 0
- static warning(message: str) None
- class pycolmap.Timer
- elapsed_hours(self: pycolmap.Timer) float
- elapsed_micro_seconds(self: pycolmap.Timer) float
- elapsed_minutes(self: pycolmap.Timer) float
- elapsed_seconds(self: pycolmap.Timer) float
- pause(self: pycolmap.Timer) None
- print_hours(self: pycolmap.Timer) None
- print_minutes(self: pycolmap.Timer) None
- print_seconds(self: pycolmap.Timer) None
- reset(self: pycolmap.Timer) None
- restart(self: pycolmap.Timer) None
- resume(self: pycolmap.Timer) None
- start(self: pycolmap.Timer) None
- pycolmap.homography_decomposition(
- H: numpy.ndarray[numpy.float64[3, 3]],
- K1: numpy.ndarray[numpy.float64[3, 3]],
- K2: numpy.ndarray[numpy.float64[3, 3]],
- points1: numpy.ndarray[numpy.float64[m, 2]],
- points2: numpy.ndarray[numpy.float64[m, 2]],
Analytical Homography Decomposition.
- class pycolmap.Rotation3d
- angle(self: pycolmap.Rotation3d) float
- angle_to(self: pycolmap.Rotation3d, other: pycolmap.Rotation3d) float
- inverse(self: pycolmap.Rotation3d) pycolmap.Rotation3d
- matrix(self: pycolmap.Rotation3d) numpy.ndarray[numpy.float64[3, 3]]
- mergedict(self: object, arg0: dict) None
- norm(self: pycolmap.Rotation3d) float
- normalize(self: pycolmap.Rotation3d) None
- property quat
Quaternion in [x,y,z,w] format. (ndarray, default: [0. 0. 0. 1.])
- summary(self: pycolmap.Rotation3d, write_type: bool = False) str
- todict(self: pycolmap.Rotation3d, recursive: bool = True) dict
- class pycolmap.Rigid3d
- adjoint(self: pycolmap.Rigid3d) numpy.ndarray[numpy.float64[6, 6]]
- essential_matrix(self: pycolmap.Rigid3d) numpy.ndarray[numpy.float64[3, 3]]
- get_covariance_for_inverse(
- self: pycolmap.Rigid3d,
- covar: numpy.ndarray[numpy.float64[6, 6]],
- static interpolate(cam_from_world1: pycolmap.Rigid3d, cam_from_world2: pycolmap.Rigid3d, t: float) pycolmap.Rigid3d
- inverse(self: pycolmap.Rigid3d) pycolmap.Rigid3d
- matrix(self: pycolmap.Rigid3d) numpy.ndarray[numpy.float64[3, 4]]
- mergedict(self: object, arg0: dict) None
- property rotation
(Rotation3d, default: Rotation3d(quat_xyzw=[0, 0, 0, 1]))
- summary(self: pycolmap.Rigid3d, write_type: bool = False) str
- todict(self: pycolmap.Rigid3d, recursive: bool = True) dict
- property translation
(ndarray, default: [0. 0. 0.])
- class pycolmap.Sim3d
- inverse(self: pycolmap.Sim3d) pycolmap.Sim3d
- matrix(self: pycolmap.Sim3d) numpy.ndarray[numpy.float64[3, 4]]
- mergedict(self: object, arg0: dict) None
- property rotation
(Rotation3d, default: Rotation3d(quat_xyzw=[0, 0, 0, 1]))
- property scale
(ndarray, default: 1.0)
- summary(self: pycolmap.Sim3d, write_type: bool = False) str
- todict(self: pycolmap.Sim3d, recursive: bool = True) dict
- transform_camera_world(self: pycolmap.Sim3d, cam_from_world: pycolmap.Rigid3d) pycolmap.Rigid3d
- property translation
(ndarray, default: [0. 0. 0.])
- class pycolmap.PosePriorCoordinateSystem
Members:
UNDEFINED
WGS84
CARTESIAN
- CARTESIAN = <PosePriorCoordinateSystem.CARTESIAN: 1>
- UNDEFINED = <PosePriorCoordinateSystem.UNDEFINED: -1>
- WGS84 = <PosePriorCoordinateSystem.WGS84: 0>
- property name
- property value
- class pycolmap.PosePrior
- property coordinate_system
(PosePriorCoordinateSystem, default: PosePriorCoordinateSystem.UNDEFINED)
- is_covariance_valid(self: pycolmap.PosePrior) bool
- is_valid(self: pycolmap.PosePrior) bool
- mergedict(self: object, arg0: dict) None
- property position
(ndarray, default: [nan nan nan])
- property position_covariance
(ndarray, default: [[nan nan nan] [nan nan nan] [nan nan nan]])
- summary(self: pycolmap.PosePrior, write_type: bool = False) str
- todict(self: pycolmap.PosePrior, recursive: bool = True) dict
- class pycolmap.RANSACOptions
- property confidence
(float, default: 0.9999)
- property dyn_num_trials_multiplier
(float, default: 3.0)
- property max_error
(float, default: 4.0)
- property max_num_trials
(int, default: 100000)
- mergedict(self: object, arg0: dict) None
- property min_inlier_ratio
(float, default: 0.01)
- property min_num_trials
(int, default: 1000)
- summary(self: pycolmap.RANSACOptions, write_type: bool = False) str
- todict(self: pycolmap.RANSACOptions, recursive: bool = True) dict
- class pycolmap.Point2D
- has_point3D(self: pycolmap.Point2D) bool
- mergedict(self: object, arg0: dict) None
- property point3D_id
(int, default: 18446744073709551615)
- summary(self: pycolmap.Point2D, write_type: bool = False) str
- todict(self: pycolmap.Point2D, recursive: bool = True) dict
- property xy
(ndarray, default: [0. 0.])
- class pycolmap.ListPoint2D
- append(self: pycolmap.ListPoint2D, x: pycolmap.Point2D) None
Add an item to the end of the list
- clear(self: pycolmap.ListPoint2D) None
Clear the contents
- extend(*args, **kwargs)
Overloaded function.
extend(self: pycolmap.ListPoint2D, L: pycolmap.ListPoint2D) -> None
Extend the list by appending all the items in the given list
extend(self: pycolmap.ListPoint2D, L: Iterable) -> None
Extend the list by appending all the items in the given list
- insert(self: pycolmap.ListPoint2D, i: int, x: pycolmap.Point2D) None
Insert an item at a given position.
- pop(*args, **kwargs)
Overloaded function.
pop(self: pycolmap.ListPoint2D) -> pycolmap.Point2D
Remove and return the last item
pop(self: pycolmap.ListPoint2D, i: int) -> pycolmap.Point2D
Remove and return the item at index
i
- class pycolmap.CameraModelId
Members:
INVALID
SIMPLE_PINHOLE
PINHOLE
SIMPLE_RADIAL
SIMPLE_RADIAL_FISHEYE
RADIAL
RADIAL_FISHEYE
OPENCV
OPENCV_FISHEYE
FULL_OPENCV
FOV
THIN_PRISM_FISHEYE
RAD_TAN_THIN_PRISM_FISHEYE
- FOV = <CameraModelId.FOV: 7>
- FULL_OPENCV = <CameraModelId.FULL_OPENCV: 6>
- INVALID = <CameraModelId.INVALID: -1>
- OPENCV = <CameraModelId.OPENCV: 4>
- OPENCV_FISHEYE = <CameraModelId.OPENCV_FISHEYE: 5>
- PINHOLE = <CameraModelId.PINHOLE: 1>
- RADIAL = <CameraModelId.RADIAL: 3>
- RADIAL_FISHEYE = <CameraModelId.RADIAL_FISHEYE: 9>
- RAD_TAN_THIN_PRISM_FISHEYE = <CameraModelId.RAD_TAN_THIN_PRISM_FISHEYE: 11>
- SIMPLE_PINHOLE = <CameraModelId.SIMPLE_PINHOLE: 0>
- SIMPLE_RADIAL = <CameraModelId.SIMPLE_RADIAL: 2>
- SIMPLE_RADIAL_FISHEYE = <CameraModelId.SIMPLE_RADIAL_FISHEYE: 8>
- THIN_PRISM_FISHEYE = <CameraModelId.THIN_PRISM_FISHEYE: 10>
- property name
- property value
- class pycolmap.Camera
- calibration_matrix(self: pycolmap.Camera) numpy.ndarray[numpy.float64[3, 3]]
Compute calibration matrix from params.
- cam_from_img(*args, **kwargs)
Overloaded function.
cam_from_img(self: pycolmap.Camera, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> numpy.ndarray[numpy.float64[2, 1]]
Project point in image plane to world / infinity.
cam_from_img(self: pycolmap.Camera, arg0: numpy.ndarray[numpy.float64[m, 2]]) -> numpy.ndarray[numpy.float64[m, 2]]
Project list of points in image plane to world / infinity.
cam_from_img(self: pycolmap.Camera, arg0: pycolmap.ListPoint2D) -> numpy.ndarray[numpy.float64[m, 2]]
Project list of points in image plane to world / infinity.
- cam_from_img_threshold(self: pycolmap.Camera, arg0: float) float
Convert pixel threshold in image plane to world space.
- property camera_id
Unique identifier of the camera. (int, default: 4294967295)
- static create(
- camera_id: int,
- model: pycolmap.CameraModelId,
- focal_length: float,
- width: int,
- height: int,
- extra_params_idxs(self: pycolmap.Camera) list[int]
Indices of extra parameters in params property.
- property focal_length
- focal_length_idxs(self: pycolmap.Camera) list[int]
Indices of focal length parameters in params property.
- property focal_length_x
- property focal_length_y
- has_bogus_params(self: pycolmap.Camera, arg0: float, arg1: float, arg2: float) bool
Check whether camera has bogus parameters.
- property has_prior_focal_length
(bool, default: False)
- property height
Height of camera sensor. (int, default: 0)
- img_from_cam(*args, **kwargs)
Overloaded function.
img_from_cam(self: pycolmap.Camera, arg0: numpy.ndarray[numpy.float64[2, 1]]) -> numpy.ndarray[numpy.float64[2, 1]]
Project point from world / infinity to image plane.
img_from_cam(self: pycolmap.Camera, arg0: numpy.ndarray[numpy.float64[m, 2]]) -> numpy.ndarray[numpy.float64[m, 2]]
Project list of points from world / infinity to image plane.
img_from_cam(self: pycolmap.Camera, arg0: numpy.ndarray[numpy.float64[m, 3]]) -> object
Project list of points from world / infinity to image plane.
img_from_cam(self: pycolmap.Camera, arg0: pycolmap.ListPoint2D) -> numpy.ndarray[numpy.float64[m, 2]]
Project list of points from world / infinity to image plane.
- mean_focal_length(self: pycolmap.Camera) float
- mergedict(self: object, arg0: dict) None
- property model
Camera model. (CameraModelId, default: CameraModelId.INVALID)
- property params
Camera parameters. (ndarray, default: [])
- property params_info
Get human-readable information about the parameter vector ordering.
- params_to_string(self: pycolmap.Camera) str
Concatenate parameters as comma-separated list.
- principal_point_idxs(self: pycolmap.Camera) list[int]
Indices of principal point parameters in params property.
- property principal_point_x
- property principal_point_y
- rescale(*args, **kwargs)
Overloaded function.
rescale(self: pycolmap.Camera, arg0: int, arg1: int) -> None
Rescale camera dimensions to (width_height) and accordingly the focal length and and the principal point.
rescale(self: pycolmap.Camera, arg0: float) -> None
Rescale camera dimensions by given factor and accordingly the focal length and and the principal point.
- set_params_from_string(self: pycolmap.Camera, arg0: str) bool
Set camera parameters from comma-separated list.
- summary(self: pycolmap.Camera, write_type: bool = False) str
- todict(self: pycolmap.Camera, recursive: bool = True) dict
- verify_params(self: pycolmap.Camera) bool
Check whether parameters are valid, i.e. the parameter vector has the correct dimensions that match the specified camera model.
- property width
Width of camera sensor. (int, default: 0)
- class pycolmap.MapCameraIdToCamera
- items(self: pycolmap.MapCameraIdToCamera) pycolmap.ItemsView
- keys(self: pycolmap.MapCameraIdToCamera) pycolmap.KeysView
- values(self: pycolmap.MapCameraIdToCamera) pycolmap.ValuesView
- class pycolmap.KeysView
- class pycolmap.ValuesView
- class pycolmap.ItemsView
- class pycolmap.Image
- property cam_from_world
The pose of the image, defined as the transformation from world to camera space. (Rigid3d, default: Rigid3d(quat_xyzw=[0, 0, 0, 1], t=[0, 0, 0]))
- property camera
The address of the camera (NoneType, default: None)
- property camera_id
Unique identifier of the camera. (int, default: 4294967295)
- get_valid_point2D_ids(self: pycolmap.Image) list[int]
- get_valid_points2D(self: pycolmap.Image) pycolmap.ListPoint2D
- has_camera_id(self: pycolmap.Image) bool
Check whether identifier of camera has been set.
- has_camera_ptr(self: pycolmap.Image) bool
Check whether the camera pointer has been set.
- has_point3D(self: pycolmap.Image, point3D_id: int) bool
Check whether one of the image points is part of a 3D point track.
- property image_id
Unique identifier of image. (int, default: 4294967295)
- mergedict(self: object, arg0: dict) None
- property name
Name of the image. (str, default: )
- num_points2D(self: pycolmap.Image) int
Get the number of image points (keypoints).
- property num_points3D
Get the number of triangulations, i.e. the number of points that are part of a 3D point track. (int, default: 0)
- point2D(self: pycolmap.Image, point2D_idx: int) pycolmap.Point2D
Direct accessor for a point2D.
- property points2D
Array of Points2D (=keypoints). (ListPoint2D, default: [])
- project_point(
- self: pycolmap.Image,
- arg0: numpy.ndarray[numpy.float64[3, 1]],
Project 3D point onto the image
- projection_center(self: pycolmap.Image) numpy.ndarray[numpy.float64[3, 1]]
Extract the projection center in world space.
- property registered
Whether image is registered in the reconstruction. (bool, default: False)
- reset_camera_ptr(self: pycolmap.Image) None
Make the camera pointer a nullptr.
- reset_point3D_for_point2D(self: pycolmap.Image, point2D_idx: int) None
Set the point as not triangulated, i.e. it is not part of a 3D point track
- set_point3D_for_point2D(self: pycolmap.Image, point2D_Idx: int, point3D_id: int) None
Set the point as triangulated, i.e. it is part of a 3D point track.
- summary(self: pycolmap.Image, write_type: bool = False) str
- todict(self: pycolmap.Image, recursive: bool = True) dict
- viewing_direction(self: pycolmap.Image) numpy.ndarray[numpy.float64[3, 1]]
Extract the viewing direction of the image.
- class pycolmap.MapImageIdToImage
- items(self: pycolmap.MapImageIdToImage) pycolmap.ItemsView
- keys(self: pycolmap.MapImageIdToImage) pycolmap.KeysView
- values(self: pycolmap.MapImageIdToImage) pycolmap.ValuesView
- class pycolmap.TrackElement
- property image_id
(int, default: 4294967295)
- mergedict(self: object, arg0: dict) None
- property point2D_idx
(int, default: 4294967295)
- summary(self: pycolmap.TrackElement, write_type: bool = False) str
- todict(self: pycolmap.TrackElement, recursive: bool = True) dict
- class pycolmap.Track
- add_element(self: pycolmap.Track, image_id: int, point2D_idx: int) None
Add an observation to the track.
- add_elements(self: pycolmap.Track, elements: list[pycolmap.TrackElement]) None
Add multiple elements.
- append(self: pycolmap.Track, element: pycolmap.TrackElement) None
- delete_element(self: pycolmap.Track, image_id: int, point2D_idx: int) None
Delete observation from track.
- property elements
(list, default: [])
- length(self: pycolmap.Track) int
Track Length.
- mergedict(self: object, arg0: dict) None
- remove(*args, **kwargs)
Overloaded function.
remove(self: pycolmap.Track, index: int) -> None
Remove TrackElement at index.
remove(self: pycolmap.Track, image_id: int, point2D_idx: int) -> None
Remove TrackElement with (image_id, point2D_idx).
- summary(self: pycolmap.Track, write_type: bool = False) str
- todict(self: pycolmap.Track, recursive: bool = True) dict
- class pycolmap.Point3D
- property color
(ndarray, default: [0 0 0])
- property error
(float, default: -1.0)
- mergedict(self: object, arg0: dict) None
- summary(self: pycolmap.Point3D, write_type: bool = False) str
- todict(self: pycolmap.Point3D, recursive: bool = True) dict
- property track
(Track, default: Track(length=0))
- property xyz
(ndarray, default: [0. 0. 0.])
- class pycolmap.MapPoint3DIdToPoint3D
- items(self: pycolmap.MapPoint3DIdToPoint3D) pycolmap.ItemsView
- keys(self: pycolmap.MapPoint3DIdToPoint3D) pycolmap.KeysView
- values(self: pycolmap.MapPoint3DIdToPoint3D) pycolmap.ValuesView
- class pycolmap.CorrespondenceGraph
- add_correspondences(
- self: pycolmap.CorrespondenceGraph,
- image_id1: int,
- image_id2: int,
- correspondences: numpy.ndarray[numpy.uint32[m, 2]],
- add_image(self: pycolmap.CorrespondenceGraph, image_id: int, num_points2D: int) None
- exists_image(self: pycolmap.CorrespondenceGraph, image_id: int) bool
- extract_correspondences(
- self: pycolmap.CorrespondenceGraph,
- image_id: int,
- point2D_idx: int,
- extract_transitive_correspondences(
- self: pycolmap.CorrespondenceGraph,
- image_id: int,
- point2D_idx: int,
- transitivity: int,
- finalize(self: pycolmap.CorrespondenceGraph) None
- find_correspondences_between_images(
- self: pycolmap.CorrespondenceGraph,
- image_id1: int,
- image_id2: int,
- has_correspondences(self: pycolmap.CorrespondenceGraph, image_id: int, point2D_idx: int) bool
- is_two_view_observation(self: pycolmap.CorrespondenceGraph, image_id: int, point2D_idx: int) bool
- num_correspondences_between_all_images(self: pycolmap.CorrespondenceGraph) dict[int, int]
- num_correspondences_between_images(
- self: pycolmap.CorrespondenceGraph,
- image_id1: int,
- image_id2: int,
- num_correspondences_for_image(self: pycolmap.CorrespondenceGraph, image_id: int) int
- num_image_pairs(self: pycolmap.CorrespondenceGraph) int
- num_images(self: pycolmap.CorrespondenceGraph) int
- num_observations_for_image(self: pycolmap.CorrespondenceGraph, image_id: int) int
- class pycolmap.Reconstruction
- add_camera(self: pycolmap.Reconstruction, camera: pycolmap.Camera) None
Add new camera. There is only one camera per image, while multiple images might be taken by the same camera.
- add_image(self: pycolmap.Reconstruction, image: pycolmap.Image) None
Add new image. Its camera must have been added before. If its camera object is unset, it will be automatically populated from the added cameras.
- add_observation(
- self: pycolmap.Reconstruction,
- point3D_id: int,
- track_element: pycolmap.TrackElement,
Add observation to existing 3D point.
- add_point3D(
- self: pycolmap.Reconstruction,
- xyz: numpy.ndarray[numpy.float64[3, 1]],
- track: pycolmap.Track,
- color: numpy.ndarray[numpy.uint8[3, 1]] = array([0, 0, 0], dtype=uint8),
Add new 3D object, and return its unique ID.
- camera(self: pycolmap.Reconstruction, camera_id: int) pycolmap.Camera
Direct accessor for a camera.
- property cameras
- check(self: pycolmap.Reconstruction) None
Check if current reconstruction is well formed.
- compute_bounding_box(
- self: pycolmap.Reconstruction,
- p0: float = 0.0,
- p1: float = 1.0,
- compute_mean_observations_per_reg_image(self: pycolmap.Reconstruction) float
- compute_mean_reprojection_error(self: pycolmap.Reconstruction) float
- compute_mean_track_length(self: pycolmap.Reconstruction) float
- compute_num_observations(self: pycolmap.Reconstruction) int
- create_image_dirs(self: pycolmap.Reconstruction, path: str) None
Create all image sub-directories in the given path.
- crop(
- self: pycolmap.Reconstruction,
- bbox: tuple[numpy.ndarray[numpy.float64[3, 1]], numpy.ndarray[numpy.float64[3, 1]]],
- delete_observation(self: pycolmap.Reconstruction, image_id: int, point2D_idx: int) None
Delete one observation from an image and the corresponding 3D point. Note that this deletes the entire 3D point, if the track has two elements prior to calling this method.
- delete_point3D(self: pycolmap.Reconstruction, point3D_id: int) None
Delete a 3D point, and all its references in the observed images.
- deregister_image(self: pycolmap.Reconstruction, image_id: int) None
De-register an existing image, and all its references.
- exists_camera(self: pycolmap.Reconstruction, camera_id: int) bool
- exists_image(self: pycolmap.Reconstruction, image_id: int) bool
- exists_point3D(self: pycolmap.Reconstruction, point3D_id: int) bool
- export_PLY(self: pycolmap.Reconstruction, output_path: str) None
Export 3D points to PLY format (.ply).
- extract_colors_for_all_images(self: pycolmap.Reconstruction, path: str) None
Extract colors for all 3D points by computing the mean color of all images.
- extract_colors_for_image(self: pycolmap.Reconstruction, image_id: int, path: str) bool
Extract colors for 3D points of given image. Colors will be extracted only for 3D points which are completely black. Return True if the image could be read at the given path.
- find_common_reg_image_ids(
- self: pycolmap.Reconstruction,
- other: pycolmap.Reconstruction,
Find images that are both present in this and the given reconstruction.
- find_image_with_name(self: pycolmap.Reconstruction, name: str) pycolmap.Image
Find image with matching name. Returns None if no match is found.
- image(self: pycolmap.Reconstruction, image_id: int) pycolmap.Image
Direct accessor for an image.
- property images
- import_PLY(self: pycolmap.Reconstruction, path: str) None
Import from PLY format. Note that these import functions areonly intended for visualization of data and usable for reconstruction.
- is_image_registered(self: pycolmap.Reconstruction, image_id: int) bool
Check if image is registered.
- merge_points3D(self: pycolmap.Reconstruction, point3D_id1: int, point3D_id2: int) int
Merge two 3D points and return new identifier of new 3D point.The location of the merged 3D point is a weighted average of the two original 3D point’s locations according to their track lengths.
- normalize(
- self: pycolmap.Reconstruction,
- fixed_scale: bool = False,
- extent: float = 10.0,
- p0: float = 0.1,
- p1: float = 0.9,
- use_images: bool = True,
Normalize scene by scaling and translation to avoid degeneratevisualization after bundle adjustment and to improve numericalstability of algorithms.
Translates scene such that the mean of the camera centers or pointlocations are at the origin of the coordinate system.
Scales scene such that the minimum and maximum camera centers are at the given extent, whereas p0 and p1 determine the minimum and maximum percentiles of the camera centers considered.
- num_cameras(self: pycolmap.Reconstruction) int
- num_images(self: pycolmap.Reconstruction) int
- num_points3D(self: pycolmap.Reconstruction) int
- num_reg_images(self: pycolmap.Reconstruction) int
- point3D(self: pycolmap.Reconstruction, point3D_id: int) pycolmap.Point3D
Direct accessor for a Point3D.
- point3D_ids(self: pycolmap.Reconstruction) set[int]
- property points3D
- read(self: pycolmap.Reconstruction, sfm_dir: str) None
Read reconstruction in COLMAP format. Prefer binary.
- read_binary(self: pycolmap.Reconstruction, path: str) None
- read_text(self: pycolmap.Reconstruction, path: str) None
- reg_image_ids(self: pycolmap.Reconstruction) list[int]
- register_image(self: pycolmap.Reconstruction, image_id: int) None
Register an existing image.
- summary(self: pycolmap.Reconstruction) str
- tear_down(self: pycolmap.Reconstruction) None
- transform(self: pycolmap.Reconstruction, new_from_old_world: pycolmap.Sim3d) None
Apply the 3D similarity transformation to all images and points.
- update_point_3d_errors(self: pycolmap.Reconstruction) None
- write(self: pycolmap.Reconstruction, output_dir: str) None
Write reconstruction in COLMAP binary format.
- write_binary(self: pycolmap.Reconstruction, path: str) None
- write_text(self: pycolmap.Reconstruction, path: str) None
- class pycolmap.ReconstructionManager
- add(self: pycolmap.ReconstructionManager) int
- clear(self: pycolmap.ReconstructionManager) None
- delete(self: pycolmap.ReconstructionManager, idx: int) None
- get(self: pycolmap.ReconstructionManager, idx: int) pycolmap.Reconstruction
- read(self: pycolmap.ReconstructionManager, path: str) int
- size(self: pycolmap.ReconstructionManager) int
- write(self: pycolmap.ReconstructionManager, path: str) None
- class pycolmap.TwoViewGeometryConfiguration
Members:
UNDEFINED
DEGENERATE
CALIBRATED
UNCALIBRATED
PLANAR
PANORAMIC
PLANAR_OR_PANORAMIC
WATERMARK
MULTIPLE
- CALIBRATED = <TwoViewGeometryConfiguration.CALIBRATED: 2>
- DEGENERATE = <TwoViewGeometryConfiguration.DEGENERATE: 1>
- MULTIPLE = <TwoViewGeometryConfiguration.MULTIPLE: 8>
- PANORAMIC = <TwoViewGeometryConfiguration.PANORAMIC: 5>
- PLANAR = <TwoViewGeometryConfiguration.PLANAR: 4>
- PLANAR_OR_PANORAMIC = <TwoViewGeometryConfiguration.PLANAR_OR_PANORAMIC: 6>
- UNCALIBRATED = <TwoViewGeometryConfiguration.UNCALIBRATED: 3>
- UNDEFINED = <TwoViewGeometryConfiguration.UNDEFINED: 0>
- WATERMARK = <TwoViewGeometryConfiguration.WATERMARK: 7>
- property name
- property value
- class pycolmap.TwoViewGeometry
- property E
(ndarray, default: [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]])
- property F
(ndarray, default: [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]])
- property H
(ndarray, default: [[0. 0. 0.] [0. 0. 0.] [0. 0. 0.]])
- property cam2_from_cam1
(Rigid3d, default: Rigid3d(quat_xyzw=[0, 0, 0, 1], t=[0, 0, 0]))
- property config
(int, default: 0)
- property inlier_matches
(ndarray, default: [])
- invert(self: pycolmap.TwoViewGeometry) None
- mergedict(self: object, arg0: dict) None
- summary(self: pycolmap.TwoViewGeometry, write_type: bool = False) str
- todict(self: pycolmap.TwoViewGeometry, recursive: bool = True) dict
- property tri_angle
(float, default: -1.0)
- class pycolmap.Database
- clear_all_tables(self: pycolmap.Database) None
- clear_cameras(self: pycolmap.Database) None
- clear_descriptors(self: pycolmap.Database) None
- clear_images(self: pycolmap.Database) None
- clear_keypoints(self: pycolmap.Database) None
- clear_matches(self: pycolmap.Database) None
- clear_pose_priors(self: pycolmap.Database) None
- clear_two_view_geometries(self: pycolmap.Database) None
- close(self: pycolmap.Database) None
- delete_inlier_matches(self: pycolmap.Database, image_id1: int, image_id2: int) None
- delete_matches(self: pycolmap.Database, image_id1: int, image_id2: int) None
- exists_camera(self: pycolmap.Database, camera_id: int) bool
- exists_descriptors(self: pycolmap.Database, image_id: int) bool
- exists_image(*args, **kwargs)
Overloaded function.
exists_image(self: pycolmap.Database, image_id: int) -> bool
exists_image(self: pycolmap.Database, name: str) -> bool
- exists_inlier_matches(self: pycolmap.Database, image_id1: int, image_id2: int) bool
- exists_keypoints(self: pycolmap.Database, image_id: int) bool
- exists_matches(self: pycolmap.Database, image_id1: int, image_id2: int) bool
- exists_pose_prior(self: pycolmap.Database, image_id: int) bool
- static image_pair_to_pair_id(image_id1: int, image_id2: int) int
- static merge(database1: pycolmap.Database, database2: pycolmap.Database, merged_database: pycolmap.Database) None
- property num_cameras
- property num_descriptors
- num_descriptors_for_image(self: pycolmap.Database, image_id: int) int
- property num_images
- property num_inlier_matches
- property num_keypoints
- num_keypoints_for_image(self: pycolmap.Database, image_id: int) int
- property num_matched_image_pairs
- property num_matches
- property num_pose_priors
- property num_verified_image_pairs
- open(self: pycolmap.Database, path: str) None
- static pair_id_to_image_pair(pair_id: int) tuple[int, int]
- read_all_cameras(self: pycolmap.Database) list[pycolmap.Camera]
- read_all_images(self: pycolmap.Database) list[pycolmap.Image]
- read_camera(self: pycolmap.Database, camera_id: int) pycolmap.Camera
- read_descriptors(self: pycolmap.Database, image_id: int) numpy.ndarray[numpy.uint8[m, n]]
- read_image(*args, **kwargs)
Overloaded function.
read_image(self: pycolmap.Database, image_id: int) -> pycolmap.Image
read_image(self: pycolmap.Database, name: str) -> pycolmap.Image
- read_keypoints(self: pycolmap.Database, image_id: int) numpy.ndarray[numpy.float32[m, n]]
- read_matches(self: pycolmap.Database, image_id1: int, image_id2: int) numpy.ndarray[numpy.uint32[m, 2]]
- read_pose_prior(self: pycolmap.Database, image_id: int) pycolmap.PosePrior
- read_two_view_geometries(self: pycolmap.Database) tuple[list[int], list[pycolmap.TwoViewGeometry]]
- read_two_view_geometry(self: pycolmap.Database, image_id1: int, image_id2: int) pycolmap.TwoViewGeometry
- read_two_view_geometry_num_inliers(self: pycolmap.Database) tuple[list[tuple[int, int]], list[int]]
- static swap_image_pair(image_id1: int, image_id2: int) bool
- update_camera(self: pycolmap.Database, camera: pycolmap.Camera) None
- update_image(self: pycolmap.Database, image: pycolmap.Image) None
- write_camera(self: pycolmap.Database, camera: pycolmap.Camera, use_camera_id: bool = False) int
- write_descriptors(
- self: pycolmap.Database,
- image_id: int,
- descriptors: numpy.ndarray[numpy.uint8[m, n]],
- write_image(self: pycolmap.Database, image: pycolmap.Image, use_image_id: bool = False) int
- write_keypoints(self: pycolmap.Database, image_id: int, keypoints: numpy.ndarray[numpy.float32[m, n]]) None
- write_matches(
- self: pycolmap.Database,
- image_id1: int,
- image_id2: int,
- matches: numpy.ndarray[numpy.uint32[m, 2]],
- write_pose_prior(self: pycolmap.Database, image_id: int, pose_prior: pycolmap.PosePrior) None
- write_two_view_geometry(
- self: pycolmap.Database,
- image_id1: int,
- image_id2: int,
- two_view_geometry: pycolmap.TwoViewGeometry,
- class pycolmap.DatabaseTransaction
- class pycolmap.DatabaseCache
- property cameras
- property correspondence_graph
- static create(
- database: pycolmap.Database,
- min_num_matches: int,
- ignore_watermarks: bool,
- image_names: set[str],
- exists_camera(self: pycolmap.DatabaseCache, camera_id: int) bool
- exists_image(self: pycolmap.DatabaseCache, image_id: int) bool
- find_image_with_name(self: pycolmap.DatabaseCache, name: str) pycolmap.Image
- property images
- num_cameras(self: pycolmap.DatabaseCache) int
- num_images(self: pycolmap.DatabaseCache) int
- class pycolmap.AbsolutePoseEstimationOptions
- property estimate_focal_length
(bool, default: False)
- property max_focal_length_ratio
(float, default: 5.0)
- mergedict(self: object, arg0: dict) None
- property min_focal_length_ratio
(float, default: 0.2)
- property num_focal_length_samples
(int, default: 30)
- property ransac
(RANSACOptions, default: RANSACOptions(max_error=12.0, min_inlier_ratio=0.1, confidence=0.99999, dyn_num_trials_multiplier=3.0, min_num_trials=100, max_num_trials=10000))
- summary(self: pycolmap.AbsolutePoseEstimationOptions, write_type: bool = False) str
- todict(self: pycolmap.AbsolutePoseEstimationOptions, recursive: bool = True) dict
- class pycolmap.AbsolutePoseRefinementOptions
- property gradient_tolerance
(float, default: 1.0)
- property loss_function_scale
(float, default: 1.0)
- property max_num_iterations
(int, default: 100)
- mergedict(self: object, arg0: dict) None
- property print_summary
(bool, default: False)
- property refine_extra_params
(bool, default: False)
- property refine_focal_length
(bool, default: False)
- summary(self: pycolmap.AbsolutePoseRefinementOptions, write_type: bool = False) str
- todict(self: pycolmap.AbsolutePoseRefinementOptions, recursive: bool = True) dict
- pycolmap.absolute_pose_estimation(
- points2D: numpy.ndarray[numpy.float64[m, 2]],
- points3D: numpy.ndarray[numpy.float64[m, 3]],
- camera: pycolmap.Camera,
- estimation_options: pycolmap.AbsolutePoseEstimationOptions = AbsolutePoseEstimationOptions(),
- refinement_options: pycolmap.AbsolutePoseRefinementOptions = AbsolutePoseRefinementOptions(),
- return_covariance: bool = False,
Absolute pose estimation with non-linear refinement.
- pycolmap.pose_refinement(
- cam_from_world: pycolmap.Rigid3d,
- points2D: numpy.ndarray[numpy.float64[m, 2]],
- points3D: numpy.ndarray[numpy.float64[m, 3]],
- inlier_mask: numpy.ndarray[bool[m, 1]],
- camera: pycolmap.Camera,
- refinement_options: pycolmap.AbsolutePoseRefinementOptions = AbsolutePoseRefinementOptions(),
Non-linear refinement of absolute pose.
- class pycolmap.ImageAlignmentError
- property image_name
- property proj_center_error
- property rotation_error_deg
- pycolmap.align_reconstructions_via_reprojections(
- src_reconstruction: pycolmap.Reconstruction,
- tgt_reconstruction: pycolmap.Reconstruction,
- min_inlier_observations: float = 0.3,
- max_reproj_error: float = 8.0,
- pycolmap.align_reconstructions_via_proj_centers(
- src_reconstruction: pycolmap.Reconstruction,
- tgt_reconstruction: pycolmap.Reconstruction,
- max_proj_center_error: float,
- pycolmap.align_reconstructions_via_points(
- src_reconstruction: pycolmap.Reconstruction,
- tgt_reconstruction: pycolmap.Reconstruction,
- min_common_observations: int = 3,
- max_error: float = 0.005,
- min_inlier_ratio: float = 0.9,
- pycolmap.align_reconstruction_to_locations(
- src: pycolmap.Reconstruction,
- image_names: list[str],
- locations: numpy.ndarray[numpy.float64[m, 3]],
- min_common_points: int,
- ransac_options: pycolmap.RANSACOptions,
- pycolmap.compare_reconstructions(
- reconstruction1: pycolmap.Reconstruction,
- reconstruction2: pycolmap.Reconstruction,
- alignment_error: str = 'reprojection',
- min_inlier_observations: float = 0.3,
- max_reproj_error: float = 8.0,
- max_proj_center_error: float = 0.1,
- class pycolmap.LossFunctionType
Members:
TRIVIAL
SOFT_L1
CAUCHY
- CAUCHY = <LossFunctionType.CAUCHY: 2>
- SOFT_L1 = <LossFunctionType.SOFT_L1: 1>
- TRIVIAL = <LossFunctionType.TRIVIAL: 0>
- property name
- property value
- class pycolmap.BundleAdjustmentOptions
- create_loss_function(self: pycolmap.BundleAdjustmentOptions) pyceres.LossFunction
- property gpu_index
Which GPU to use for solving the problem. (str, default: -1)
- property loss_function_scale
Scaling factor determines residual at which robustification takes place. (float, default: 1.0)
- property loss_function_type
Loss function types: Trivial (non-robust) and Cauchy (robust) loss. (LossFunctionType, default: LossFunctionType.TRIVIAL)
- property max_num_images_direct_dense_cpu_solver
Threshold to switch between direct, sparse, and iterative solvers. (int, default: 50)
- property max_num_images_direct_dense_gpu_solver
Threshold to switch between direct, sparse, and iterative solvers. (int, default: 200)
- property max_num_images_direct_sparse_cpu_solver
Threshold to switch between direct, sparse, and iterative solvers. (int, default: 1000)
- property max_num_images_direct_sparse_gpu_solver
Threshold to switch between direct, sparse, and iterative solvers. (int, default: 4000)
- mergedict(self: object, arg0: dict) None
- property min_num_images_gpu_solver
Minimum number of images to use the GPU solver. (int, default: 50)
- property min_num_residuals_for_cpu_multi_threading
Minimum number of residuals to enable multi-threading. Note that single-threaded is typically better for small bundle adjustment problems due to the overhead of threading. (int, default: 50000)
- property print_summary
Whether to print a final summary. (bool, default: True)
- property refine_extra_params
Whether to refine the extra parameter group. (bool, default: True)
- property refine_extrinsics
Whether to refine the extrinsic parameter group. (bool, default: True)
- property refine_focal_length
Whether to refine the focal length parameter group. (bool, default: True)
- property refine_principal_point
Whether to refine the principal point parameter group. (bool, default: False)
- property solver_options
Options for the Ceres solver. Using this member requires having PyCeres installed. (SolverOptions, default: <pyceres.SolverOptions object at 0x7972fedaa7b0>)
- summary(self: pycolmap.BundleAdjustmentOptions, write_type: bool = False) str
- todict(self: pycolmap.BundleAdjustmentOptions, recursive: bool = True) dict
- property use_gpu
Whether to use Ceres’ CUDA linear algebra library, if available. (bool, default: False)
- class pycolmap.BundleAdjustmentConfig
- add_constant_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) None
- add_image(self: pycolmap.BundleAdjustmentConfig, image_id: int) None
- add_variable_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) None
- property constant_cam_poses
(set, default: set())
- constant_cam_positions(self: pycolmap.BundleAdjustmentConfig, image_id: int) list[int]
- property constant_intrinsics
(set, default: set())
- property constant_point3D_ids
(set, default: set())
- has_constant_cam_intrinsics(self: pycolmap.BundleAdjustmentConfig, camera_id: int) bool
- has_constant_cam_pose(self: pycolmap.BundleAdjustmentConfig, image_id: int) bool
- has_constant_cam_positions(self: pycolmap.BundleAdjustmentConfig, image_id: int) bool
- has_constant_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) bool
- has_image(self: pycolmap.BundleAdjustmentConfig, image_id: int) bool
- has_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) bool
- has_variable_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) bool
- property image_ids
(set, default: set())
- mergedict(self: object, arg0: dict) None
- num_constant_cam_intrinsics(self: pycolmap.BundleAdjustmentConfig) int
- num_constant_cam_poses(self: pycolmap.BundleAdjustmentConfig) int
- num_constant_cam_positions(self: pycolmap.BundleAdjustmentConfig) int
- num_constant_points(self: pycolmap.BundleAdjustmentConfig) int
- num_images(self: pycolmap.BundleAdjustmentConfig) int
- num_points(self: pycolmap.BundleAdjustmentConfig) int
- num_residuals(
- self: pycolmap.BundleAdjustmentConfig,
- reconstruction: pycolmap.Reconstruction,
- num_variable_points(self: pycolmap.BundleAdjustmentConfig) int
- remove_constant_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) None
- remove_image(self: pycolmap.BundleAdjustmentConfig, image_id: int) None
- remove_variable_cam_positions(self: pycolmap.BundleAdjustmentConfig, image_id: int) None
- remove_variable_point(self: pycolmap.BundleAdjustmentConfig, point3D_id: int) None
- set_constant_cam_intrinsics(self: pycolmap.BundleAdjustmentConfig, camera_id: int) None
- set_constant_cam_pose(self: pycolmap.BundleAdjustmentConfig, image_id: int) None
- set_constant_cam_positions(
- self: pycolmap.BundleAdjustmentConfig,
- image_id: int,
- idxs: list[int],
- set_variable_cam_intrinsics(self: pycolmap.BundleAdjustmentConfig, camera_id: int) None
- set_variable_cam_pose(self: pycolmap.BundleAdjustmentConfig, image_id: int) None
- summary(self: pycolmap.BundleAdjustmentConfig, write_type: bool = False) str
- todict(self: pycolmap.BundleAdjustmentConfig, recursive: bool = True) dict
- property variable_point3D_ids
(set, default: set())
- class pycolmap.BundleAdjuster
- property config
- property options
- property problem
- set_up_problem(
- self: pycolmap.BundleAdjuster,
- reconstruction: pycolmap.Reconstruction,
- loss_function: pyceres.LossFunction,
- set_up_solver_options(
- self: pycolmap.BundleAdjuster,
- problem: pyceres.Problem,
- input_solver_options: pyceres.SolverOptions,
- solve(self: pycolmap.BundleAdjuster, reconstruction: pycolmap.Reconstruction) bool
- property summary
- pycolmap.estimate_pose_covariance_from_ba_ceres_backend(
- problem: pyceres.Problem,
- reconstruction: pycolmap.Reconstruction,
- pycolmap.estimate_pose_covariance_from_ba(
- problem: pyceres.Problem,
- reconstruction: pycolmap.Reconstruction,
- damping: float = 1e-08,
- class pycolmap.BundleAdjustmentCovarianceEstimatorBase
- compute(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase) bool
- compute_full(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase) bool
- get_covariance(*args, **kwargs)
Overloaded function.
get_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, paramter_block: numpy.ndarray[numpy.float64]) -> numpy.ndarray[numpy.float64[m, n]]
get_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, parameter_blocks: list[numpy.ndarray[numpy.float64]]) -> numpy.ndarray[numpy.float64[m, n]]
get_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, parameter_block1: numpy.ndarray[numpy.float64], parameter_block2: numpy.ndarray[numpy.float64]) -> numpy.ndarray[numpy.float64[m, n]]
- get_pose_covariance(*args, **kwargs)
Overloaded function.
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase) -> numpy.ndarray[numpy.float64[m, n]]
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, image_id: int) -> numpy.ndarray[numpy.float64[m, n]]
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, image_ids: list[int]) -> numpy.ndarray[numpy.float64[m, n]]
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, image_id1: int, image_id2: int) -> numpy.ndarray[numpy.float64[m, n]]
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, paramter_block: numpy.ndarray[numpy.float64]) -> numpy.ndarray[numpy.float64[m, n]]
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, parameter_blocks: list[numpy.ndarray[numpy.float64]]) -> numpy.ndarray[numpy.float64[m, n]]
get_pose_covariance(self: pycolmap.BundleAdjustmentCovarianceEstimatorBase, parameter_block1: numpy.ndarray[numpy.float64], parameter_block2: numpy.ndarray[numpy.float64]) -> numpy.ndarray[numpy.float64[m, n]]
- has_block(
- self: pycolmap.BundleAdjustmentCovarianceEstimatorBase,
- parameter_block: float,
- has_pose(
- self: pycolmap.BundleAdjustmentCovarianceEstimatorBase,
- image_id: int,
- has_pose_block(
- self: pycolmap.BundleAdjustmentCovarianceEstimatorBase,
- parameter_block: float,
- has_reconstruction( ) bool
- has_valid_full_covariance( ) bool
- has_valid_pose_covariance( ) bool
- set_pose_blocks(
- self: pycolmap.BundleAdjustmentCovarianceEstimatorBase,
- pose_blocks: list[numpy.ndarray[numpy.float64]],
- class pycolmap.BundleAdjustmentCovarianceEstimatorCeresBackend
- class pycolmap.BundleAdjustmentCovarianceEstimator
- factorize(self: pycolmap.BundleAdjustmentCovarianceEstimator) bool
- factorize_full(self: pycolmap.BundleAdjustmentCovarianceEstimator) bool
- has_valid_full_factorization( ) bool
- has_valid_pose_factorization( ) bool
- pycolmap.essential_matrix_estimation(
- points2D1: numpy.ndarray[numpy.float64[m, 2]],
- points2D2: numpy.ndarray[numpy.float64[m, 2]],
- camera1: pycolmap.Camera,
- camera2: pycolmap.Camera,
- estimation_options: pycolmap.RANSACOptions = RANSACOptions(),
LORANSAC + 5-point algorithm.
- pycolmap.fundamental_matrix_estimation(
- points2D1: numpy.ndarray[numpy.float64[m, 2]],
- points2D2: numpy.ndarray[numpy.float64[m, 2]],
- estimation_options: pycolmap.RANSACOptions = RANSACOptions(),
LORANSAC + 7-point algorithm.
- pycolmap.rig_absolute_pose_estimation(
- points2D: numpy.ndarray[numpy.float64[m, 2]],
- points3D: numpy.ndarray[numpy.float64[m, 3]],
- camera_idxs: list[int],
- cams_from_rig: list[pycolmap.Rigid3d],
- cameras: list[pycolmap.Camera],
- estimation_options: pycolmap.RANSACOptions = AbsolutePoseEstimationOptions().ransac,
- refinement_options: pycolmap.AbsolutePoseRefinementOptions = AbsolutePoseRefinementOptions(),
- return_covariance: bool = False,
Absolute pose estimation with non-linear refinement for a multi-camera rig.
- pycolmap.homography_matrix_estimation(
- points2D1: numpy.ndarray[numpy.float64[m, 2]],
- points2D2: numpy.ndarray[numpy.float64[m, 2]],
- estimation_options: pycolmap.RANSACOptions = RANSACOptions(),
LORANSAC + 4-point DLT algorithm.
- class pycolmap.TriangulationResidualType
Members:
ANGULAR_ERROR
REPROJECTION_ERROR
- ANGULAR_ERROR = <TriangulationResidualType.ANGULAR_ERROR: 0>
- REPROJECTION_ERROR = <TriangulationResidualType.REPROJECTION_ERROR: 1>
- property name
- property value
- class pycolmap.EstimateTriangulationOptions
- mergedict(self: object, arg0: dict) None
- property min_tri_angle
Minimum triangulation angle in radians. (float, default: 0.0)
- property ransac
RANSAC options. (RANSACOptions, default: RANSACOptions(max_error=0.03490658503988659, min_inlier_ratio=0.02, confidence=0.9999, dyn_num_trials_multiplier=3.0, min_num_trials=0, max_num_trials=10000))
- property residual_type
Employed residual type. (TriangulationResidualType, default: TriangulationResidualType.ANGULAR_ERROR)
- summary(self: pycolmap.EstimateTriangulationOptions, write_type: bool = False) str
- todict(self: pycolmap.EstimateTriangulationOptions, recursive: bool = True) dict
- pycolmap.estimate_triangulation(
- points: numpy.ndarray[numpy.float64[m, 2]],
- cams_from_world: list[pycolmap.Rigid3d],
- cameras: list[pycolmap.Camera],
- options: pycolmap.EstimateTriangulationOptions = EstimateTriangulationOptions(),
Robustly estimate 3D point from observations in multiple views using RANSAC
- class pycolmap.TwoViewGeometryOptions
- property compute_relative_pose
(bool, default: False)
- property detect_watermark
(bool, default: True)
- property force_H_use
(bool, default: False)
- property max_H_inlier_ratio
(float, default: 0.8)
- mergedict(self: object, arg0: dict) None
- property min_E_F_inlier_ratio
(float, default: 0.95)
- property min_num_inliers
(int, default: 15)
- property multiple_ignore_watermark
(bool, default: True)
- property multiple_models
(bool, default: False)
- property ransac
(RANSACOptions, default: RANSACOptions(max_error=4.0, min_inlier_ratio=0.25, confidence=0.999, dyn_num_trials_multiplier=3.0, min_num_trials=100, max_num_trials=10000))
- summary(self: pycolmap.TwoViewGeometryOptions, write_type: bool = False) str
- todict(self: pycolmap.TwoViewGeometryOptions, recursive: bool = True) dict
- property watermark_border_size
(float, default: 0.1)
- property watermark_min_inlier_ratio
(float, default: 0.7)
- pycolmap.estimate_calibrated_two_view_geometry(
- camera1: pycolmap.Camera,
- points1: numpy.ndarray[numpy.float64[m, 2]],
- camera2: pycolmap.Camera,
- points2: numpy.ndarray[numpy.float64[m, 2]],
- matches: numpy.ndarray[numpy.uint32[m, 2]] = None,
- options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
- pycolmap.estimate_two_view_geometry(
- camera1: pycolmap.Camera,
- points1: numpy.ndarray[numpy.float64[m, 2]],
- camera2: pycolmap.Camera,
- points2: numpy.ndarray[numpy.float64[m, 2]],
- matches: numpy.ndarray[numpy.uint32[m, 2]] = None,
- options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
- pycolmap.estimate_two_view_geometry_pose(
- camera1: pycolmap.Camera,
- points1: numpy.ndarray[numpy.float64[m, 2]],
- camera2: pycolmap.Camera,
- points2: numpy.ndarray[numpy.float64[m, 2]],
- geometry: pycolmap.TwoViewGeometry,
- pycolmap.squared_sampson_error(
- points2D1: numpy.ndarray[numpy.float64[m, 2]],
- points2D2: numpy.ndarray[numpy.float64[m, 2]],
- E: numpy.ndarray[numpy.float64[3, 3]],
Calculate the squared Sampson error for a given essential or fundamental matrix.
- class pycolmap.ObservationManager
- add_observation(
- self: pycolmap.ObservationManager,
- point3D_id: int,
- track_element: pycolmap.TrackElement,
Add observation to existing 3D point.
- add_point3D(
- self: pycolmap.ObservationManager,
- xyz: numpy.ndarray[numpy.float64[3, 1]],
- track: pycolmap.Track,
- color: numpy.ndarray[numpy.uint8[3, 1]] = array([0, 0, 0], dtype=uint8),
Add new 3D object, and return its unique ID.
- decrement_correspondence_has_point3D(
- self: pycolmap.ObservationManager,
- image_id: int,
- point2D_idx: int,
Indicate that another image has a point that is not triangulated any more and has a correspondence to this image point. This assumesthat IncrementCorrespondenceHasPoint3D was called for the sameimage point and correspondence before.
- delete_observation(self: pycolmap.ObservationManager, image_id: int, point2D_idx: int) None
Delete one observation from an image and the corresponding 3D point. Note that this deletes the entire 3D point, if the track has two elements prior to calling this method.
- delete_point3D(self: pycolmap.ObservationManager, point3D_id: int) None
Delete a 3D point, and all its references in the observed images.
- deregister_image(self: pycolmap.ObservationManager, image_id: int) None
De-register an existing image, and all its references.
- filter_all_points3D(
- self: pycolmap.ObservationManager,
- max_reproj_error: float,
- min_tri_angle: float,
Filter 3D points with large reprojection error, negative depth, orinsufficient triangulation angle. Return the number of filtered observations.
- filter_images(
- self: pycolmap.ObservationManager,
- min_focal_length_ratio: float,
- max_focal_length_ratio: float,
- max_extra_param: float,
Filter images without observations or bogus camera parameters.Return the identifiers of the filtered images.
- filter_observations_with_negative_depth(self: pycolmap.ObservationManager) int
Filter observations that have negative depth. Return the number of filtered observations.
- filter_points3D(
- self: pycolmap.ObservationManager,
- max_reproj_error: float,
- min_tri_angle: float,
- point3D_ids: set[int],
Filter 3D points with large reprojection error, negative depth, orinsufficient triangulation angle. Return the number of filtered observations.
- filter_points3D_in_images(
- self: pycolmap.ObservationManager,
- max_reproj_error: float,
- min_tri_angle: float,
- image_ids: set[int],
Filter 3D points with large reprojection error, negative depth, orinsufficient triangulation angle. Return the number of filtered observations.
- property image_pairs
- increment_correspondence_has_point3D(
- self: pycolmap.ObservationManager,
- image_id: int,
- point2D_idx: int,
Indicate that another image has a point that is triangulated and has a correspondence to this image point.
- merge_points3D(self: pycolmap.ObservationManager, point3D_id1: int, point3D_id2: int) int
Merge two 3D points and return new identifier of new 3D point.The location of the merged 3D point is a weighted average of the two original 3D point’s locations according to their track lengths.
- num_correspondences(self: pycolmap.ObservationManager, image_id: int) int
Number of correspondences for all image points.
- num_observations(self: pycolmap.ObservationManager, image_id: int) int
Number of observations, i.e. the number of image points thathave at least one correspondence to another image.
- num_visible_points3D(self: pycolmap.ObservationManager, image_id: int) int
Get the number of observations that see a triangulated point, i.e. the number of image points that have at least one correspondence toa triangulated point in another image.
- point3D_visibility_score(self: pycolmap.ObservationManager, image_id: int) int
Get the score of triangulated observations. In contrast to`NumVisiblePoints3D`, this score also captures the distributionof triangulated observations in the image. This is useful to select the next best image in incremental reconstruction, because amore uniform distribution of observations results in more robust registration.
- class pycolmap.IncrementalTriangulatorOptions
- property complete_max_reproj_error
Maximum reprojection error to complete an existing triangulation. (float, default: 4.0)
- property complete_max_transitivity
Maximum transitivity for track completion. (int, default: 5)
- property continue_max_angle_error
Maximum angular error to continue existing triangulations. (float, default: 2.0)
- property create_max_angle_error
Maximum angular error to create new triangulations. (float, default: 2.0)
- property ignore_two_view_tracks
Whether to ignore two-view tracks. (bool, default: True)
- property max_extra_param
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 1.0)
- property max_focal_length_ratio
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 10.0)
- property max_transitivity
Maximum transitivity to search for correspondences. (int, default: 1)
- property merge_max_reproj_error
Maximum reprojection error in pixels to merge triangulations. (float, default: 4.0)
- mergedict(self: object, arg0: dict) None
- property min_angle
Minimum pairwise triangulation angle for a stable triangulation. (float, default: 1.5)
- property min_focal_length_ratio
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 0.1)
- property re_max_angle_error
Maximum angular error to re-triangulate under-reconstructed image pairs. (float, default: 5.0)
- property re_max_trials
Maximum number of trials to re-triangulate an image pair. (int, default: 1)
- property re_min_ratio
Minimum ratio of common triangulations between an image pair over the number of correspondences between that image pair to be considered as under-reconstructed. (float, default: 0.2)
- summary(self: pycolmap.IncrementalTriangulatorOptions, write_type: bool = False) str
- todict(self: pycolmap.IncrementalTriangulatorOptions, recursive: bool = True) dict
- class pycolmap.IncrementalTriangulator
- add_modified_point3D(self: pycolmap.IncrementalTriangulator, point3D_id: int) None
- clear_modified_points3D(self: pycolmap.IncrementalTriangulator) None
- complete_all_tracks(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- complete_image(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- image_id: int,
- complete_tracks(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- point3D_ids: set[int],
- merge_all_tracks(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- merge_tracks(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- point3D_ids: set[int],
- retriangulate(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- triangulate_image(
- self: pycolmap.IncrementalTriangulator,
- options: pycolmap.IncrementalTriangulatorOptions,
- image_id: int,
- class pycolmap.ImageSelectionMethod
Members:
MAX_VISIBLE_POINTS_NUM
MAX_VISIBLE_POINTS_RATIO
MIN_UNCERTAINTY
- MAX_VISIBLE_POINTS_NUM = <ImageSelectionMethod.MAX_VISIBLE_POINTS_NUM: 0>
- MAX_VISIBLE_POINTS_RATIO = <ImageSelectionMethod.MAX_VISIBLE_POINTS_RATIO: 1>
- MIN_UNCERTAINTY = <ImageSelectionMethod.MIN_UNCERTAINTY: 2>
- property name
- property value
- class pycolmap.IncrementalMapperOptions
- property abs_pose_max_error
Maximum reprojection error in absolute pose estimation. (float, default: 12.0)
- property abs_pose_min_inlier_ratio
Minimum inlier ratio in absolute pose estimation. (float, default: 0.25)
- property abs_pose_min_num_inliers
Minimum number of inliers in absolute pose estimation. (int, default: 30)
- property abs_pose_refine_extra_params
Whether to estimate the extra parameters in absolute pose estimation. (bool, default: True)
- property abs_pose_refine_focal_length
Whether to estimate the focal length in absolute pose estimation. (bool, default: True)
- property filter_max_reproj_error
Maximum reprojection error in pixels for observations. (float, default: 4.0)
- property filter_min_tri_angle
Minimum triangulation angle in degrees for stable 3D points. (float, default: 1.5)
- property fix_existing_images
If reconstruction is provided as input, fix the existing image poses. (bool, default: False)
- property image_selection_method
Method to find and select next best image to register. (ImageSelectionMethod, default: ImageSelectionMethod.MIN_UNCERTAINTY)
- property init_max_error
Maximum error in pixels for two-view geometry estimation for initial image pair. (float, default: 4.0)
- property init_max_forward_motion
Maximum forward motion for initial image pair. (float, default: 0.95)
- property init_max_reg_trials
Maximum number of trials to use an image for initialization. (int, default: 2)
- property init_min_num_inliers
Minimum number of inliers for initial image pair. (int, default: 100)
- property init_min_tri_angle
Minimum triangulation angle for initial image pair. (float, default: 16.0)
- property local_ba_min_tri_angle
Minimum triangulation for images to be chosen in local bundle adjustment. (float, default: 6.0)
- property local_ba_num_images
Number of images to optimize in local bundle adjustment. (int, default: 6)
- property max_extra_param
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 1.0)
- property max_focal_length_ratio
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 10.0)
- property max_reg_trials
Maximum number of trials to register an image. (int, default: 3)
- mergedict(self: object, arg0: dict) None
- property min_focal_length_ratio
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 0.1)
- property num_threads
Number of threads. (int, default: -1)
- summary(self: pycolmap.IncrementalMapperOptions, write_type: bool = False) str
- todict(self: pycolmap.IncrementalMapperOptions, recursive: bool = True) dict
- class pycolmap.LocalBundleAdjustmentReport
- mergedict(self: object, arg0: dict) None
- property num_adjusted_observations
(int, default: 0)
- property num_completed_observations
(int, default: 0)
- property num_filtered_observations
(int, default: 0)
- property num_merged_observations
(int, default: 0)
- summary(self: pycolmap.LocalBundleAdjustmentReport, write_type: bool = False) str
- todict(self: pycolmap.LocalBundleAdjustmentReport, recursive: bool = True) dict
- class pycolmap.IncrementalMapper
- adjust_global_bundle(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- ba_options: pycolmap.BundleAdjustmentOptions,
- adjust_local_bundle(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- ba_options: pycolmap.BundleAdjustmentOptions,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- image_id: int,
- point3D_ids: set[int],
- begin_reconstruction(
- self: pycolmap.IncrementalMapper,
- reconstruction: pycolmap.Reconstruction,
- clear_modified_points3D(self: pycolmap.IncrementalMapper) None
- complete_and_merge_tracks(
- self: pycolmap.IncrementalMapper,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- complete_tracks(
- self: pycolmap.IncrementalMapper,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- end_reconstruction(self: pycolmap.IncrementalMapper, discard: bool) None
- estimate_initial_two_view_geometry(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- image_id1: int,
- image_id2: int,
- property existing_image_ids
- filter_images(self: pycolmap.IncrementalMapper, options: pycolmap.IncrementalMapperOptions) int
- filter_points(self: pycolmap.IncrementalMapper, options: pycolmap.IncrementalMapperOptions) int
- property filtered_images
- find_initial_image_pair(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- image_id1: int,
- image_id2: int,
- find_local_bundle(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- image_id: int,
- find_next_images(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- get_modified_points3D(self: pycolmap.IncrementalMapper) set[int]
- iterative_global_refinement(
- self: pycolmap.IncrementalMapper,
- max_num_refinements: int,
- max_refinement_change: float,
- options: pycolmap.IncrementalMapperOptions,
- ba_options: pycolmap.BundleAdjustmentOptions,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- normalize_reconstruction: bool = True,
- iterative_local_refinement(
- self: pycolmap.IncrementalMapper,
- max_num_refinements: int,
- max_refinement_change: float,
- options: pycolmap.IncrementalMapperOptions,
- ba_options: pycolmap.BundleAdjustmentOptions,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- image_id: int,
- merge_tracks(
- self: pycolmap.IncrementalMapper,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- property num_reg_images_per_camera
- num_total_reg_images(self: pycolmap.IncrementalMapper) int
- property observation_manager
- property reconstruction
- register_initial_image_pair(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- two_view_geometry: pycolmap.TwoViewGeometry,
- image_id1: int,
- image_id2: int,
- register_next_image(
- self: pycolmap.IncrementalMapper,
- options: pycolmap.IncrementalMapperOptions,
- image_id: int,
- retriangulate(
- self: pycolmap.IncrementalMapper,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- triangulate_image(
- self: pycolmap.IncrementalMapper,
- tri_options: pycolmap.IncrementalTriangulatorOptions,
- image_id: int,
- property triangulator
- class pycolmap.IncrementalPipelineOptions
- property ba_global_function_tolerance
Ceres solver function tolerance for global bundle adjustment. (float, default: 0.0)
- property ba_global_images_freq
The growth rates after which to perform global bundle adjustment. (int, default: 500)
- property ba_global_images_ratio
The growth rates after which to perform global bundle adjustment. (float, default: 1.1)
- property ba_global_max_num_iterations
The maximum number of global bundle adjustment iterations. (int, default: 50)
- property ba_global_max_refinement_change
The thresholds for iterative bundle adjustment refinements. (float, default: 0.0005)
- property ba_global_max_refinements
The thresholds for iterative bundle adjustment refinements. (int, default: 5)
- property ba_global_points_freq
The growth rates after which to perform global bundle adjustment. (int, default: 250000)
- property ba_global_points_ratio
The growth rates after which to perform global bundle adjustment. (float, default: 1.1)
- property ba_local_function_tolerance
Ceres solver function tolerance for local bundle adjustment. (float, default: 0.0)
- property ba_local_max_num_iterations
The maximum number of local bundle adjustment iterations. (int, default: 25)
- property ba_local_max_refinement_change
The thresholds for iterative bundle adjustment refinements. (float, default: 0.001)
- property ba_local_max_refinements
The thresholds for iterative bundle adjustment refinements. (int, default: 2)
- property ba_local_num_images
The number of images to optimize in local bundle adjustment. (int, default: 6)
- property ba_min_num_residuals_for_cpu_multi_threading
The minimum number of residuals per bundle adjustment problem to enable multi-threading solving of the problems. (int, default: 50000)
- property ba_refine_extra_params
Which intrinsic parameters to optimize during the reconstruction. (bool, default: True)
- property ba_refine_focal_length
Which intrinsic parameters to optimize during the reconstruction. (bool, default: True)
- property ba_refine_principal_point
Which intrinsic parameters to optimize during the reconstruction. (bool, default: False)
- property extract_colors
Whether to extract colors for reconstructed points. (bool, default: True)
- property fix_existing_images
If reconstruction is provided as input, fix the existing image poses. (bool, default: False)
- get_global_bundle_adjustment( ) pycolmap.BundleAdjustmentOptions
- get_local_bundle_adjustment( ) pycolmap.BundleAdjustmentOptions
- get_mapper(self: pycolmap.IncrementalPipelineOptions) pycolmap.IncrementalMapperOptions
- get_triangulation( ) pycolmap.IncrementalTriangulatorOptions
- property ignore_watermarks
Whether to ignore the inlier matches of watermark image pairs. (bool, default: False)
- property image_names
Which images to reconstruct. If no images are specified, all images will be reconstructed by default. (set, default: set())
- property init_image_id1
The image identifier of the first image used to initialize the reconstruction. (int, default: -1)
- property init_image_id2
The image identifier of the second image used to initialize the reconstruction. Determined automatically if left unspecified. (int, default: -1)
- property init_num_trials
The number of trials to initialize the reconstruction. (int, default: 200)
- is_initial_pair_provided(self: pycolmap.IncrementalPipelineOptions) bool
- property mapper
Options of the IncrementalMapper. (IncrementalMapperOptions, default: IncrementalMapperOptions(init_min_num_inliers=100, init_max_error=4.0, init_max_forward_motion=0.95, init_min_tri_angle=16.0, init_max_reg_trials=2, abs_pose_max_error=12.0, abs_pose_min_num_inliers=30, abs_pose_min_inlier_ratio=0.25, abs_pose_refine_focal_length=True, abs_pose_refine_extra_params=True, local_ba_num_images=6, local_ba_min_tri_angle=6.0, min_focal_length_ratio=0.1, max_focal_length_ratio=10.0, max_extra_param=1.0, filter_max_reproj_error=4.0, filter_min_tri_angle=1.5, max_reg_trials=3, fix_existing_images=False, num_threads=-1, image_selection_method=ImageSelectionMethod.MIN_UNCERTAINTY))
- property max_extra_param
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 1.0)
- property max_focal_length_ratio
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 10.0)
- property max_model_overlap
The maximum number of overlapping images between sub-models. If the current sub-models shares more than this number of images with another model, then the reconstruction is stopped. (int, default: 20)
- property max_num_models
The number of sub-models to reconstruct. (int, default: 50)
- mergedict(self: object, arg0: dict) None
- property min_focal_length_ratio
The threshold used to filter and ignore images with degenerate intrinsics. (float, default: 0.1)
- property min_model_size
The minimum number of registered images of a sub-model, otherwise the sub-model is discarded. Note that the first sub-model is always kept independent of size. (int, default: 10)
- property min_num_matches
The minimum number of matches for inlier matches to be considered. (int, default: 15)
- property multiple_models
Whether to reconstruct multiple sub-models. (bool, default: True)
- property num_threads
The number of threads to use during reconstruction. (int, default: -1)
- property snapshot_images_freq
Frequency of registered images according to which reconstruction snapshots will be saved. (int, default: 0)
- property snapshot_path
Path to a folder in which reconstruction snapshots will be saved during incremental reconstruction. (str, default: )
- summary(self: pycolmap.IncrementalPipelineOptions, write_type: bool = False) str
- todict(self: pycolmap.IncrementalPipelineOptions, recursive: bool = True) dict
- property triangulation
Options of the IncrementalTriangulator. (IncrementalTriangulatorOptions, default: IncrementalTriangulatorOptions(max_transitivity=1, create_max_angle_error=2.0, continue_max_angle_error=2.0, merge_max_reproj_error=4.0, complete_max_reproj_error=4.0, complete_max_transitivity=5, re_max_angle_error=5.0, re_min_ratio=0.2, re_max_trials=1, min_angle=1.5, ignore_two_view_tracks=True, min_focal_length_ratio=0.1, max_focal_length_ratio=10.0, max_extra_param=1.0))
- class pycolmap.IncrementalMapperCallback
Members:
INITIAL_IMAGE_PAIR_REG_CALLBACK
NEXT_IMAGE_REG_CALLBACK
LAST_IMAGE_REG_CALLBACK
- INITIAL_IMAGE_PAIR_REG_CALLBACK = <IncrementalMapperCallback.INITIAL_IMAGE_PAIR_REG_CALLBACK: 0>
- LAST_IMAGE_REG_CALLBACK = <IncrementalMapperCallback.LAST_IMAGE_REG_CALLBACK: 2>
- NEXT_IMAGE_REG_CALLBACK = <IncrementalMapperCallback.NEXT_IMAGE_REG_CALLBACK: 1>
- property name
- property value
- class pycolmap.IncrementalMapperStatus
Members:
NO_INITIAL_PAIR
BAD_INITIAL_PAIR
SUCCESS
INTERRUPTED
- BAD_INITIAL_PAIR = <IncrementalMapperStatus.BAD_INITIAL_PAIR: 1>
- INTERRUPTED = <IncrementalMapperStatus.INTERRUPTED: 3>
- NO_INITIAL_PAIR = <IncrementalMapperStatus.NO_INITIAL_PAIR: 0>
- SUCCESS = <IncrementalMapperStatus.SUCCESS: 2>
- property name
- property value
- class pycolmap.IncrementalPipeline
- add_callback(self: pycolmap.IncrementalPipeline, id: int, func: Callable[[], None]) None
- callback(self: pycolmap.IncrementalPipeline, id: int) None
- check_run_global_refinement(
- self: pycolmap.IncrementalPipeline,
- reconstruction: pycolmap.Reconstruction,
- ba_prev_num_reg_images: int,
- ba_prev_num_points: int,
- property database_cache
- property database_path
- property image_path
- initialize_reconstruction(
- self: pycolmap.IncrementalPipeline,
- core_mapper: pycolmap.IncrementalMapper,
- mapper_options: pycolmap.IncrementalMapperOptions,
- reconstruction: pycolmap.Reconstruction,
- load_database(self: pycolmap.IncrementalPipeline) bool
- property options
- reconstruct(
- self: pycolmap.IncrementalPipeline,
- mapper_options: pycolmap.IncrementalMapperOptions,
- reconstruct_sub_model(
- self: pycolmap.IncrementalPipeline,
- core_mapper: pycolmap.IncrementalMapper,
- mapper_options: pycolmap.IncrementalMapperOptions,
- reconstruction: pycolmap.Reconstruction,
- property reconstruction_manager
- run(self: pycolmap.IncrementalPipeline) None
- class pycolmap.Normalization
Members:
L1_ROOT : L1-normalizes each descriptor followed by element-wise square rooting. This normalization is usually better than standard L2-normalization. See ‘Three things everyone should know to improve object retrieval’, Relja Arandjelovic and Andrew Zisserman, CVPR 2012.
L2 : Each vector is L2-normalized.
- L1_ROOT = <Normalization.L1_ROOT: 0>
- L2 = <Normalization.L2: 1>
- property name
- property value
- class pycolmap.SiftExtractionOptions
- property darkness_adaptivity
Whether to adapt the feature detection depending on the image darkness. only available on GPU. (bool, default: False)
- property domain_size_pooling
“Domain-Size Pooling in Local Descriptors and NetworkArchitectures”, J. Dong and S. Soatto, CVPR 2015 (bool, default: False)
- property dsp_max_scale
(float, default: 3.0)
- property dsp_min_scale
(float, default: 0.16666666666666666)
- property dsp_num_scales
(int, default: 10)
- property edge_threshold
Edge threshold for detection. (float, default: 10.0)
- property estimate_affine_shape
Estimate affine shape of SIFT features in the form of oriented ellipses as opposed to original SIFT which estimates oriented disks. (bool, default: False)
- property first_octave
First octave in the pyramid, i.e. -1 upsamples the image by one level. (int, default: -1)
- property gpu_index
Index of the GPU used for feature matching. For multi-GPU matching, you should separate multiple GPU indices by comma, e.g., ‘0,1,2,3’. (str, default: -1)
- property max_image_size
Maximum image size, otherwise image will be down-scaled. (int, default: 3200)
- property max_num_features
Maximum number of features to detect, keeping larger-scale features. (int, default: 8192)
- property max_num_orientations
Maximum number of orientations per keypoint if not estimate_affine_shape. (int, default: 2)
- mergedict(self: object, arg0: dict) None
- property normalization
L1_ROOT or L2 descriptor normalization (Normalization, default: Normalization.L1_ROOT)
- property num_octaves
(int, default: 4)
- property num_threads
Number of threads for feature matching and geometric verification. (int, default: -1)
- property octave_resolution
Number of levels per octave. (int, default: 3)
- property peak_threshold
Peak threshold for detection. (float, default: 0.006666666666666667)
- summary(self: pycolmap.SiftExtractionOptions, write_type: bool = False) str
- todict(self: pycolmap.SiftExtractionOptions, recursive: bool = True) dict
- property upright
Fix the orientation to 0 for upright features (bool, default: False)
- class pycolmap.Sift
- property device
- extract(*args, **kwargs)
Overloaded function.
extract(self: pycolmap.Sift, image: numpy.ndarray[numpy.uint8[m, n], flags.c_contiguous]) -> tuple[numpy.ndarray[numpy.float32[m, 4]], numpy.ndarray[numpy.float32[m, n]]]
extract(self: pycolmap.Sift, image: numpy.ndarray[numpy.float32[m, n], flags.c_contiguous]) -> tuple[numpy.ndarray[numpy.float32[m, 4]], numpy.ndarray[numpy.float32[m, n]]]
- property options
- class pycolmap.CameraMode
Members:
AUTO
SINGLE
PER_FOLDER
PER_IMAGE
- AUTO = <CameraMode.AUTO: 0>
- PER_FOLDER = <CameraMode.PER_FOLDER: 2>
- PER_IMAGE = <CameraMode.PER_IMAGE: 3>
- SINGLE = <CameraMode.SINGLE: 1>
- property name
- property value
- class pycolmap.ImageReaderOptions
- property camera_mask_path
Optional path to an image file specifying a mask for all images. No features will be extracted in regions where the mask is black (pixel intensity value 0 in grayscale) (str, default: )
- property camera_model
Name of the camera model. (str, default: SIMPLE_RADIAL)
- property camera_params
Manual specification of camera parameters. If empty, camera parameters will be extracted from EXIF, i.e. principal point and focal length. (str, default: )
- property default_focal_length_factor
If camera parameters are not specified manually and the image does not have focal length EXIF information, the focal length is set to the value default_focal_length_factor * max(width, height). (float, default: 1.2)
- property existing_camera_id
Whether to explicitly use an existing camera for all images. Note that in this case the specified camera model and parameters are ignored. (int, default: -1)
- property mask_path
Optional root path to folder which contains imagemasks. For a given image, the corresponding maskmust have the same sub-path below this root as theimage has below image_path. The filename must beequal, aside from the added extension .png. For example, for an image image_path/abc/012.jpg,the mask would be mask_path/abc/012.jpg.png. Nofeatures will be extracted in regions where themask image is black (pixel intensity value 0 ingrayscale). (str, default: )
- mergedict(self: object, arg0: dict) None
- summary(self: pycolmap.ImageReaderOptions, write_type: bool = False) str
- todict(self: pycolmap.ImageReaderOptions, recursive: bool = True) dict
- class pycolmap.CopyType
Members:
copy
softlink
hardlink
- copy = <CopyType.copy: 0>
- hardlink = <CopyType.hardlink: 1>
- property name
- softlink = <CopyType.softlink: 2>
- property value
- class pycolmap.UndistortCameraOptions
- property blank_pixels
The amount of blank pixels in the undistorted image in the range [0, 1]. (float, default: 0.0)
- property max_image_size
Maximum image size in terms of width or height of the undistorted camera. (int, default: -1)
- property max_scale
Maximum scale change of camera used to satisfy the blank pixel constraint. (float, default: 2.0)
- mergedict(self: object, arg0: dict) None
- property min_scale
Minimum scale change of camera used to satisfy the blank pixel constraint. (float, default: 0.2)
- property roi_max_x
(float, default: 1.0)
- property roi_max_y
(float, default: 1.0)
- property roi_min_x
(float, default: 0.0)
- property roi_min_y
(float, default: 0.0)
- summary(self: pycolmap.UndistortCameraOptions, write_type: bool = False) str
- todict(self: pycolmap.UndistortCameraOptions, recursive: bool = True) dict
- pycolmap.import_images(
- database_path: str,
- image_path: str,
- camera_mode: pycolmap.CameraMode = <CameraMode.AUTO: 0>,
- image_list: list[str] = [],
- options: pycolmap.ImageReaderOptions = ImageReaderOptions(),
Import images into a database
- pycolmap.infer_camera_from_image(image_path: str, options: pycolmap.ImageReaderOptions = ImageReaderOptions()) pycolmap.Camera
Guess the camera parameters from the EXIF metadata
- pycolmap.undistort_images(
- output_path: str,
- input_path: str,
- image_path: str,
- image_list: list[str] = [],
- output_type: str = 'COLMAP',
- copy_policy: pycolmap.CopyType = <CopyType.copy: 0>,
- num_patch_match_src_images: int = 20,
- undistort_options: pycolmap.UndistortCameraOptions = UndistortCameraOptions(),
Undistort images
- pycolmap.extract_features(
- database_path: str,
- image_path: str,
- image_list: list[str] = [],
- camera_mode: pycolmap.CameraMode = <CameraMode.AUTO: 0>,
- camera_model: str = 'SIMPLE_RADIAL',
- reader_options: pycolmap.ImageReaderOptions = ImageReaderOptions(),
- sift_options: pycolmap.SiftExtractionOptions = SiftExtractionOptions(),
- device: pycolmap.Device = <Device.auto: -1>,
Extract SIFT Features and write them to database
- class pycolmap.SiftMatchingOptions
- property cross_check
Whether to enable cross checking in matching. (bool, default: True)
- property gpu_index
Index of the GPU used for feature matching. For multi-GPU matching, you should separate multiple GPU indices by comma, e.g., “0,1,2,3”. (str, default: -1)
- property guided_matching
Whether to perform guided matching, if geometric verification succeeds. (bool, default: False)
- property max_distance
Maximum distance to best match. (float, default: 0.7)
- property max_num_matches
Maximum number of matches. (int, default: 32768)
- property max_ratio
Maximum distance ratio between first and second best match. (float, default: 0.8)
- mergedict(self: object, arg0: dict) None
- property num_threads
(int, default: -1)
- summary(self: pycolmap.SiftMatchingOptions, write_type: bool = False) str
- todict(self: pycolmap.SiftMatchingOptions, recursive: bool = True) dict
- class pycolmap.ExhaustiveMatchingOptions
- property block_size
(int, default: 50)
- mergedict(self: object, arg0: dict) None
- summary(self: pycolmap.ExhaustiveMatchingOptions, write_type: bool = False) str
- todict(self: pycolmap.ExhaustiveMatchingOptions, recursive: bool = True) dict
- class pycolmap.SpatialMatchingOptions
- property ignore_z
Whether to ignore the Z-component of the location prior. (bool, default: True)
- property max_distance
The maximum distance between the query and nearest neighbor [meters]. (float, default: 100.0)
- property max_num_neighbors
The maximum number of nearest neighbors to match. (int, default: 50)
- mergedict(self: object, arg0: dict) None
- property num_threads
(int, default: -1)
- summary(self: pycolmap.SpatialMatchingOptions, write_type: bool = False) str
- todict(self: pycolmap.SpatialMatchingOptions, recursive: bool = True) dict
- class pycolmap.VocabTreeMatchingOptions
- check(self: pycolmap.VocabTreeMatchingOptions) None
- property match_list_path
Optional path to file with specific image names to match. (str, default: )
- property max_num_features
The maximum number of features to use for indexing an image. (int, default: -1)
- mergedict(self: object, arg0: dict) None
- property num_checks
Number of nearest-neighbor checks to use in retrieval. (int, default: 256)
- property num_images
Number of images to retrieve for each query image. (int, default: 100)
- property num_images_after_verification
How many images to return after spatial verification. Set to 0 to turn off spatial verification. (int, default: 0)
- property num_nearest_neighbors
Number of nearest neighbors to retrieve per query feature. (int, default: 5)
- property num_threads
(int, default: -1)
- summary(self: pycolmap.VocabTreeMatchingOptions, write_type: bool = False) str
- todict(self: pycolmap.VocabTreeMatchingOptions, recursive: bool = True) dict
- property vocab_tree_path
Path to the vocabulary tree. (str, default: )
- class pycolmap.SequentialMatchingOptions
- property loop_detection
Loop detection is invoked every loop_detection_period images. (bool, default: False)
- property loop_detection_max_num_features
The maximum number of features to use for indexing an image. If an image has more features, only the largest-scale features will be indexed. (int, default: -1)
- property loop_detection_num_checks
Number of nearest-neighbor checks to use in retrieval. (int, default: 256)
- property loop_detection_num_images
The number of images to retrieve in loop detection. This number should be significantly bigger than the sequential matching overlap. (int, default: 50)
- property loop_detection_num_images_after_verification
How many images to return after spatial verification. Set to 0 to turn off spatial verification. (int, default: 0)
- property loop_detection_num_nearest_neighbors
Number of nearest neighbors to retrieve per query feature. (int, default: 1)
- mergedict(self: object, arg0: dict) None
- property overlap
Number of overlapping image pairs. (int, default: 10)
- property quadratic_overlap
Whether to match images against their quadratic neighbors. (bool, default: True)
- summary(self: pycolmap.SequentialMatchingOptions, write_type: bool = False) str
- todict(self: pycolmap.SequentialMatchingOptions, recursive: bool = True) dict
- vocab_tree_options( ) pycolmap.VocabTreeMatchingOptions
- property vocab_tree_path
Path to the vocabulary tree. (str, default: )
- class pycolmap.ImagePairsMatchingOptions
- property block_size
Number of image pairs to match in one batch. (int, default: 1225)
- property match_list_path
Path to the file with the matches. (str, default: )
- mergedict(self: object, arg0: dict) None
- summary(self: pycolmap.ImagePairsMatchingOptions, write_type: bool = False) str
- todict(self: pycolmap.ImagePairsMatchingOptions, recursive: bool = True) dict
- pycolmap.match_exhaustive(
- database_path: str,
- sift_options: pycolmap.SiftMatchingOptions = SiftMatchingOptions(),
- matching_options: pycolmap.ExhaustiveMatchingOptions = ExhaustiveMatchingOptions(),
- verification_options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
- device: pycolmap.Device = <Device.auto: -1>,
Exhaustive feature matching
- pycolmap.match_spatial(
- database_path: str,
- sift_options: pycolmap.SiftMatchingOptions = SiftMatchingOptions(),
- matching_options: pycolmap.SpatialMatchingOptions = SpatialMatchingOptions(),
- verification_options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
- device: pycolmap.Device = <Device.auto: -1>,
Spatial feature matching
- pycolmap.match_vocabtree(
- database_path: str,
- sift_options: pycolmap.SiftMatchingOptions = SiftMatchingOptions(),
- matching_options: pycolmap.VocabTreeMatchingOptions = VocabTreeMatchingOptions(),
- verification_options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
- device: pycolmap.Device = <Device.auto: -1>,
Vocab tree feature matching
- pycolmap.match_sequential(
- database_path: str,
- sift_options: pycolmap.SiftMatchingOptions = SiftMatchingOptions(),
- matching_options: pycolmap.SequentialMatchingOptions = SequentialMatchingOptions(),
- verification_options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
- device: pycolmap.Device = <Device.auto: -1>,
Sequential feature matching
- pycolmap.verify_matches(
- database_path: str,
- pairs_path: str,
- options: pycolmap.TwoViewGeometryOptions = TwoViewGeometryOptions(),
Run geometric verification of the matches
- class pycolmap.PairGenerator
- all_pairs(self: pycolmap.PairGenerator) list[tuple[int, int]]
- has_finished(self: pycolmap.PairGenerator) bool
- next(self: pycolmap.PairGenerator) list[tuple[int, int]]
- reset(self: pycolmap.PairGenerator) None
- class pycolmap.ExhaustivePairGenerator
- class pycolmap.VocabTreePairGenerator
- class pycolmap.SequentialPairGenerator
- class pycolmap.SpatialPairGenerator
- class pycolmap.ImportedPairGenerator
- pycolmap.triangulate_points(
- reconstruction: pycolmap.Reconstruction,
- database_path: str,
- image_path: str,
- output_path: str,
- clear_points: bool = True,
- options: pycolmap.IncrementalPipelineOptions = IncrementalPipelineOptions(),
- refine_intrinsics: bool = False,
Triangulate 3D points from known camera poses
- pycolmap.incremental_mapping(
- database_path: str,
- image_path: str,
- output_path: str,
- options: pycolmap.IncrementalPipelineOptions = IncrementalPipelineOptions(),
- input_path: str = '',
- initial_image_pair_callback: Callable[[], None] = None,
- next_image_callback: Callable[[], None] = None,
Recover 3D points and unknown camera poses
- pycolmap.bundle_adjustment(
- reconstruction: pycolmap.Reconstruction,
- options: pycolmap.BundleAdjustmentOptions = BundleAdjustmentOptions(),
Jointly refine 3D points and camera poses
- class pycolmap.PatchMatchOptions
- property allow_missing_files
Whether to tolerate missing images/maps in the problem setup (bool, default: False)
- property cache_size
Cache size in gigabytes for patch match. (float, default: 32.0)
- property depth_max
(float, default: -1.0)
- property depth_min
(float, default: -1.0)
- property filter
Whether to enable filtering. (bool, default: True)
- property filter_geom_consistency_max_cost
Maximum forward-backward reprojection error for pixel to be geometrically consistent. (float, default: 1.0)
- property filter_min_ncc
Minimum NCC coefficient for pixel to be photo-consistent. (float, default: 0.10000000149011612)
- property filter_min_num_consistent
Minimum number of source images have to be consistent for pixel not to be filtered. (int, default: 2)
- property filter_min_triangulation_angle
Minimum triangulation angle to be stable. (float, default: 3.0)
- property geom_consistency
Whether to add a regularized geometric consistency term to the cost function. If true, the depth_maps and normal_maps must not be null. (bool, default: True)
- property geom_consistency_max_cost
Maximum geometric consistency cost in terms of the forward-backward reprojection error in pixels. (float, default: 3.0)
- property geom_consistency_regularizer
The relative weight of the geometric consistency term w.r.t. to the photo-consistency term. (float, default: 0.30000001192092896)
- property gpu_index
Index of the GPU used for patch match. For multi-GPU usage, you should separate multiple GPU indices by comma, e.g., “0,1,2,3”. (str, default: -1)
- property incident_angle_sigma
Spread of the incident angle likelihood function. (float, default: 0.8999999761581421)
- property max_image_size
Maximum image size in either dimension. (int, default: -1)
- mergedict(self: object, arg0: dict) None
- property min_triangulation_angle
Minimum triangulation angle in degrees. (float, default: 1.0)
- property ncc_sigma
Spread of the NCC likelihood function. (float, default: 0.6000000238418579)
- property num_iterations
Number of coordinate descent iterations. (int, default: 5)
- property num_samples
Number of random samples to draw in Monte Carlo sampling. (int, default: 15)
- property sigma_color
Color sigma for bilaterally weighted NCC. (float, default: 0.20000000298023224)
- property sigma_spatial
Spatial sigma for bilaterally weighted NCC. (float, default: -1.0)
- summary(self: pycolmap.PatchMatchOptions, write_type: bool = False) str
- todict(self: pycolmap.PatchMatchOptions, recursive: bool = True) dict
- property window_radius
Half window size to compute NCC photo-consistency cost. (int, default: 5)
- property window_step
Number of pixels to skip when computing NCC. (int, default: 1)
- property write_consistency_graph
Whether to write the consistency graph. (bool, default: False)
- pycolmap.patch_match_stereo(
- workspace_path: str,
- workspace_format: str = 'COLMAP',
- pmvs_option_name: str = 'option-all',
- options: pycolmap.PatchMatchOptions = PatchMatchOptions(),
- config_path: str = '',
Runs Patch-Match-Stereo (requires CUDA)
- class pycolmap.StereoFusionOptions
- property bounding_box
Bounding box Tuple[min, max] (tuple, default: (array([-3.4028235e+38, -3.4028235e+38, -3.4028235e+38], dtype=float32), array([3.4028235e+38, 3.4028235e+38, 3.4028235e+38], dtype=float32)))
- property cache_size
Cache size in gigabytes for fusion. (float, default: 32.0)
- property check_num_images
Number of overlapping images to transitively check for fusing points. (int, default: 50)
- property mask_path
Path for PNG masks. Same format expected as ImageReaderOptions. (str, default: )
- property max_depth_error
Maximum relative difference between measured and projected depth. (float, default: 0.009999999776482582)
- property max_image_size
Maximum image size in either dimension. (int, default: -1)
- property max_normal_error
Maximum angular difference in degrees of normals of pixels to be fused. (float, default: 10.0)
- property max_num_pixels
Maximum number of pixels to fuse into a single point. (int, default: 10000)
- property max_reproj_error
Maximum relative difference between measured and projected pixel. (float, default: 2.0)
- property max_traversal_depth
Maximum depth in consistency graph traversal. (int, default: 100)
- mergedict(self: object, arg0: dict) None
- property min_num_pixels
Minimum number of fused pixels to produce a point. (int, default: 5)
- property num_threads
The number of threads to use during fusion. (int, default: -1)
- summary(self: pycolmap.StereoFusionOptions, write_type: bool = False) str
- todict(self: pycolmap.StereoFusionOptions, recursive: bool = True) dict
- property use_cache
Flag indicating whether to use LRU cache or pre-load all data (bool, default: False)
- pycolmap.stereo_fusion(
- output_path: str,
- workspace_path: str,
- workspace_format: str = 'COLMAP',
- pmvs_option_name: str = 'option-all',
- input_type: str = 'geometric',
- options: pycolmap.StereoFusionOptions = StereoFusionOptions(),
Stereo Fusion
- class pycolmap.PoissonMeshingOptions
- property color
If specified, the reconstruction code assumes that the input is equippedwith colors and will extrapolate the color values to the vertices of thereconstructed mesh. The floating point value specifies the relativeimportance of finer color estimates over lower ones. (float, default: 32.0)
- property depth
This integer is the maximum depth of the tree that will be used for surfacereconstruction. Running at depth d corresponds to solving on a voxel gridwhose resolution is no larger than 2^d x 2^d x 2^d. Note that since thereconstructor adapts the octree to the sampling density, the specifiedreconstruction depth is only an upper bound. (int, default: 13)
- mergedict(self: object, arg0: dict) None
- property num_threads
The number of threads used for the Poisson reconstruction. (int, default: -1)
- property point_weight
This floating point value specifies the importance that interpolation ofthe point samples is given in the formulation of the screened Poissonequation. The results of the original (unscreened) Poisson Reconstructioncan be obtained by setting this value to 0. (float, default: 1.0)
- summary(self: pycolmap.PoissonMeshingOptions, write_type: bool = False) str
- todict(self: pycolmap.PoissonMeshingOptions, recursive: bool = True) dict
- property trim
This floating point values specifies the value for mesh trimming. Thesubset of the mesh with signal value less than the trim value is discarded. (float, default: 10.0)
- class pycolmap.DelaunayMeshingOptions
- property distance_sigma_factor
The factor that is applied to the computed distance sigma, which isautomatically computed as the 25th percentile of edge lengths. A highervalue will increase the smoothness of the surface. (float, default: 1.0)
- property max_depth_dist
Maximum relative depth difference between input point and a vertex of anexisting cell in the Delaunay triangulation, otherwise a new vertex iscreated in the triangulation. (float, default: 0.05)
- property max_proj_dist
Unify input points into one cell in the Delaunay triangulation that fallwithin a reprojected radius of the given pixels. (float, default: 20.0)
- property max_side_length_factor
Filtering thresholds for outlier surface mesh faces. If the longest side ofa mesh face (longest out of 3) exceeds the side lengths of all faces at acertain percentile by the given factor, then it is considered an outliermesh face and discarded. (float, default: 25.0)
- property max_side_length_percentile
Filtering thresholds for outlier surface mesh faces. If the longest side ofa mesh face (longest out of 3) exceeds the side lengths of all faces at acertain percentile by the given factor, then it is considered an outliermesh face and discarded. (float, default: 95.0)
- mergedict(self: object, arg0: dict) None
- property num_threads
The number of threads to use for reconstruction. Default is all threads. (int, default: -1)
- property quality_regularization
A higher quality regularization leads to a smoother surface. (float, default: 1.0)
- summary(self: pycolmap.DelaunayMeshingOptions, write_type: bool = False) str
- todict(self: pycolmap.DelaunayMeshingOptions, recursive: bool = True) dict
- property visibility_sigma
The standard deviation of wrt. the number of images seen by each point.Increasing this value decreases the influence of points seen in few images. (float, default: 3.0)
- pycolmap.poisson_meshing(
- input_path: str,
- output_path: str,
- options: pycolmap.PoissonMeshingOptions = PoissonMeshingOptions(),
Perform Poisson surface reconstruction and return true if successful.
- pycolmap.set_random_seed(seed: int) None
Initialize the PRNG with the given seed.
- class pycolmap.ostream